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This note is an exposition of some ideas in Fourier analysis. To make life simple, I’ll deal only with
continuous functions defined on [0, 2π]. I’ll use the notation ej = ej(x) = exp(ijx). Here’s the definition
of an inner product on complex valued functions on [0, 2π].

Definition 1.

< f, g >=

∫ 2π

0
f(x)ḡ(x)dx, ‖g‖2 =< g, g > .

Lemma 1.
< ej , ek >= 2πδkj .

Theorem 1. Let f be a continuous function on [0, 2π] and let ck = 1
2π < f, ek > . Let fN =

∑N
n=−N cnen

and let g =
∑N
−N anen, where an are any complex numbers. Then

‖f − fN‖2 ≤ ‖f − g‖2.

Hence fN is the best approximation to f in the ‖ ‖ sense among all functions that are linear combinations
of {en}N−N .

Proof.
< ej , f − fN >=< ej , f > − < ej , fN >= 2πcj − 2πcj = 0.

Since fN − g is a linear combination of ej , < f − fN , fN − g >= 0. Then we compute

‖f − g‖2 =< f − g, f − g >=< f − fN + fN − g, f − fN + fN − g >
= ‖f − fN‖2 + 2 < f − fN , fN − g > +‖fN − g‖2

= ‖f − fN‖2 + ‖fN − g‖2

≥ ‖f − fN‖2.

Definition 2.
∑∞
−∞ cnen is the Fourier series of f . If limN→∞

∑N
−N cnen(x) converges we say the Fourier

series converges. It may not converge and even if it converges it may not converge to f(x).

Now let’s do the same thing discretely. The first thing is to approximate the integral < f, ek >=∫ 2π
0 f(x) exp(−ikx)dx by a Riemann sum. Divide the interval [0, 2π] into n equal parts. Let δ = 2π/n, xj =

2πj/n = jδ. Then a Riemann sum for the integral is

2π

n

n∑
j=1

exp(
−2πijk

n
)fj ,

where fj = f(xj). Let ω = exp(−2πin ). Then ω is a primitive nth root of unity and the approximation f̂k
to the coefficient ck takes the form
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Definition 3.

f̂k =
1

n

n∑
j=1

ωkjfj .

Let Ω be the matrix defined by Ωi,j = ωij , and let f and f̂ be column vectors with componets fj and

f̂j . then Definitiion 3 can be written as matrix multiplication.

f̂ = Ωf.

In this form Definition 3 is called the Discrete Fourier Transform. Let’s find an analog of Lemma 1.
First a few properties of Ω.

Lemma 2.

ΩT = Ω, ΩΩ̄ = nI, Ω−1 =
1

n
Ω̄.

For this we need another lemma.

Lemma 3. For any nth root of unity, µ 6= 1,

n∑
k=1

µk = 0.

Proof. (of Lemma 3) An nth root of unity satisfies zn− 1 = 0. Hence µn− 1 = (µ− 1)(µn−1 +µn−2 + · · ·+
µ+ 1) = 0. Since µ 6= 0, µn−1 + µn−2 + · · ·+ µ+ 1) = 0. Multiply by µ to get

∑n
k=1 µ

k = 0.

Proof. (of Lemma 2)
The k, ` entry of ΩΩ̄ is

∑n
j=1 ω

kjω−j` =
∑n

j−1(ω
k−l)j = 0, k 6= `. If k = `, the k, k entry is n.
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