Fourier Analysis

February 21, 2011

This note is an exposition of some ideas in Fourier analysis. To make life simple, I'll deal only with continuous functions defined on $[0,2 \pi]$. I'll use the notation $e_{j}=e_{j}(x)=\exp (i j x)$. Here's the definition of an inner product on complex valued functions on $[0,2 \pi]$.

Definition 1.

$$
<f, g>=\int_{0}^{2 \pi} f(x) \bar{g}(x) d x,\|g\|^{2}=<g, g>
$$

Lemma 1.

$$
<e_{j}, e_{k}>=2 \pi \delta_{j}^{k} .
$$

Theorem 1. Let f be a continuous function on $[0,2 \pi]$ and let $\left.c_{k}=\frac{1}{2 \pi}<f, e_{k}\right\rangle$. Let $f_{N}=\sum_{n=-N}^{N} c_{n} e_{n}$ and let $g=\sum_{-N}^{N} a_{n} e_{n}$, where a_{n} are any complex numbers. Then

$$
\left\|f-f_{N}\right\|^{2} \leq\|f-g\|^{2} .
$$

Hence f_{N} is the best approximation to f in the $\|\|$ sense among all functions that are linear combinations of $\left\{e_{n}\right\}_{-N}^{N}$.
Proof.

$$
<e_{j}, f-f_{N}>=<e_{j}, f>-<e_{j}, f_{N}>=2 \pi c_{j}-2 \pi c_{j}=0 .
$$

Since $f_{N}-g$ is a linear combination of $e_{j},\left\langle f-f_{N}, f_{N}-g\right\rangle=0$. Then we compute

$$
\begin{aligned}
\|f-g\|^{2} & =<f-g, f-g>=<f-f_{N}+f_{N}-g, f-f_{N}+f_{N}-g> \\
& =\left\|f-f_{N}\right\|^{2}+2<f-f_{N}, f_{N}-g>+\left\|f_{N}-g\right\|^{2} \\
& =\left\|f-f_{N}\right\|^{2}+\left\|f_{N}-g\right\|^{2} \\
& \geq\left\|f-f_{N}\right\|^{2} .
\end{aligned}
$$

Definition 2. $\sum_{-\infty}^{\infty} c_{n} e_{n}$ is the Fourier series of f. If $\lim _{N \rightarrow \infty} \sum_{-N}^{N} c_{n} e_{n}(x)$ converges we say the Fourier series converges. It may not converge and even if it converges it may not converge to $f(x)$.

Now let's do the same thing discretely. The first thing is to approximate the integral $<f, e_{k}>=$ $\int_{0}^{2 \pi} f(x) \exp (-i k x) d x$ by a Riemann sum. Divide the interval $[0,2 \pi]$ into n equal parts. Let $\delta=2 \pi / n, x_{j}=$ $2 \pi j / n=j \delta$. Then a Riemann sum for the integral is

$$
\frac{2 \pi}{n} \sum_{j=1}^{n} \exp \left(\frac{-2 \pi i j k}{n}\right) f_{j},
$$

where $f_{j}=f\left(x_{j}\right)$. Let $\omega=\exp \left(\frac{-2 \pi i}{n}\right)$. Then ω is a primitive $n^{\text {th }}$ root of unity and the approximation \hat{f}_{k} to the coefficient c_{k} takes the form

Definition 3.

$$
\hat{f}_{k}=\frac{1}{n} \sum_{j=1}^{n} \omega^{k j} f_{j}
$$

Let Ω be the matrix defined by $\Omega_{i, j}=\omega^{i j}$, and let f and \hat{f} be column vectors with componets f_{j} and \hat{f}_{j}. then Definition 3 can be written as matrix multiplication.

$$
\hat{f}=\Omega f
$$

In this form Definition 3 is called the Discrete Fourier Transform. Let's find an analog of Lemma 1. First a few properties of Ω.

Lemma 2.

$$
\Omega^{T}=\Omega, \Omega \bar{\Omega}=n I, \Omega^{-1}=\frac{1}{n} \bar{\Omega}
$$

For this we need another lemma.
Lemma 3. For any $n^{\text {th }}$ root of unity, $\mu \neq 1$,

$$
\sum_{k=1}^{n} \mu^{k}=0
$$

Proof. (of Lemma 3) An $n^{\text {th }}$ root of unity satisfies $z^{n}-1=0$. Hence $\mu^{n}-1=(\mu-1)\left(\mu^{n-1}+\mu^{n-2}+\cdots+\right.$ $\mu+1)=0$. Since $\left.\mu \neq 0, \mu^{n-1}+\mu^{n-2}+\cdots+\mu+1\right)=0$. Multiply by μ to get $\sum_{k=1}^{n} \mu^{k}=0$.

Proof. (of Lemma 2)
The k, ℓ entry of $\Omega \bar{\Omega}$ is $\sum_{j=1}^{n} \omega^{k j} \omega^{-j \ell}=\sum_{j-1}^{n}\left(\omega^{k-l}\right)^{j}=0, k \neq \ell$. If $k=\ell$, the k, k entry is n.

